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1 INTRODUCTION
Education is a human right, and is one of the primary means for social empowerment. It is essential
that sound educational practices be implemented at scale. Education cannot result in social changes
and reforms if it is accessible by only a privileged few – indeed, such a system may even exacerbate
social �ssures.

World over, the most common paradigm for implementing anything at scale, has been the model
of the factory, that �nds it roots in the industrial revolution of 18th century Europe. �is is based
on creation of mechanized processes, mass production of homogenized output, and standardization.
Mainstream education in most countries is built around classrooms implementing standard curricula
and pedagogic styles, representing the factory paradigm of mass production.

In a classroom, curricula and educational practices are designed for a hypothetical “average”
student, having “average” abilities, and education itself is calibrated based on measurable assess-
ments and outcomes. However, recent research on individualization [20, 21], have shown huge
variability between individual traits and group averages. Modeling based on averages may be
e�ective when the target bene�ciary is the group itself. Some examples include upholding collective
metrics like average time for check-in in an airport, or average journey time for metro commuters.
However, when the individual is the target bene�ciary, designing models based on group averages,
are ine�ective.

�is is one of the main criticism of MOOCs (Massive Open Online Courses) as well [17, 30]. �e
MOOC extends the classroom model designed for the average, over large populations.

Figure 1 shows several SVM (support vector machine) models built for learners by observing
activity data generated by learners on the Gooru platform for the subject of high school mathematics.
�ese models were then clustered based on the coe�cients of each of the models. �e �gure also
depicts the “average” learner model built from all activity data from all learners. �e average learner
model is so di�erent from individual models, that it clusters into a separate singleton cluster.

Individualization is an important element of e�ective learning practices. �e problem of achieving
individualization at scale, has been addressed using AI techniques as part of the literature on
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Fig. 1. Machine learning models built for math learners on Gooru, compared with the average model

Intelligent Tutoring Systems (ITS) [2, 26], and more recently Adaptive Educational Systems (AES) [7,
23] and Adaptive Educational Hypermedia Systems (AEHS) [8, 9].

�e general design principle behind adaptive learning environments include a learner model and
a knowledge model, which are used by an AI-based computational agent, to curate a customized
learning experience. �e agent continuously monitors learner progress based on their performance
in intermediate assessments, and curates the learning pathway accordingly. Although individualized
tutoring o�ered by a human tutor is more nuanced and subtle, studies have found that automated
tutoring can be quite e�ective, and comparable to human tutoring, on several fronts [16].

However, the dearth of the human element is the biggest shortcoming of automated tutoring
environments. Learning is an inherently social activity, that is continuously curated not just by
the tutor, but also by peer in�uence from other learners. Indeed, an important element of learning
is o�en based on copying practices and beliefs of other learners who are slightly ahead of us in
the learning progression. Cognitive foundations of social learning date back to the 1960s in the
works of Bandura [3, 4], where imitation of peers is seen as an important element of cognitive
model building. Technology augmented pedagogy has incorporated elements of social learning in
di�erent ways, that are collectively called Computer Supported Collaborative Learning (CSCL), or
more recently, Web-enabled Collaborative Learning [13, 18, 24].

A related �eld of study is that of educational practices around Distributed Cognition [22, 28],
where learning and cognition is posed as a function of interaction between a human and his/her
surroundings.

Figure 2 depicts the three strategic concerns of empowerment, and technology-enabled solutions
that have predominantly focused on each of the concerns. �e paradigm of Navigated Learning
as introduced in this paper, aims to balance all three concerns to create a scalable, individualized,
social learning platform.

2 SEMANTIC EMBEDDING AND PROGRESSION SPACE
�e primary idea behind Navigated Learning that addresses all three concerns of scale, individual-
ization and social elements of learning, is called semantic embedding in a progression space. We will
describe both these terms in this section.

A progression space represents an area– speci�cally, a metric space, through which, several
participants progress through time. �e design of such spaces is meant to facilitate progressions
for all participants, in as close to an optimal fashion as possible. Examples of progression spaces
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Fig. 2. Positioning Navigated Learning

Fig. 3. Progression Space for a Subject

from other spheres of life include: airports, metro train stations, bus stations, fast-food outlets, etc.
Such spaces are characterized by a �oating population of individuals (also called participants, or, in
our case, learners), each pursuing disparate goals, but of a largely similar nature. �ere need not be
one common, overarching goal being pursued by the entire population. For instance, not all people
in a bus station may be going to the same destination, but most of the participants in a bus station
are there because they want to go somewhere or are arriving from somewhere.

Formally, a progression space is de�ned as follows:
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S = (C,d, �) (1)
HereC is a set of points that make up the space, d : C ×C →< is a “distance” function between

any pair of points in the space. A distance function has the following characteristics:
Re f lexivity ∀x ∈ C,d(x ,x) = 0
Symmetry ∀x ,y ∈ C,d(x ,y) = d(y,x)

Trianдle inequality ∀x ,y, z ∈ C,d(x , z) ≤ d(x ,y) + d(y, z)

�e term �⊆ C ×C in Eqn 1 represents a “progression” relationship between pairs of points. A
relationship of the form c1 � c2 represents that a learner at point c2 has progressed at least as much
as learner c1.

Actions and states of participants in a progression space are not necessarily independent of one
another. �e presence of some participant in some part of the space may (positively or negatively)
a�ect the experience of other participants nearby.

Navigated learning characterizes learning as an aided navigation through a progression space
comprising of several learning activities and other learners. �e journey of a learner is curated by
a navigator so�ware, based on the learner’s goals. �e navigator not only aims to personalize the
learning pathway for the learner’s needs, it also tries to take advantage of the presence of other
participants in the system.

�e unit of activity in this space, is called a learning activity. A learning activity includes but is
not limited to, consuming of resources like videos or lecture notes. A given learning activity may
also involve several learners participating in a synchronous fashion, like in a group discussion or
a debate. A learning activity also need not be a purely online activity. It can even be an o�ine
activity, like a�ending a lecture in a conventional classroom. �e only requirement for a learning
activity is that it should generate activity data that helps the navigator locate and navigate the
learner in the space.

O�ine learning activities that are part of a navigated learning scheme, are designed such that
they contain mechanisms to generate relevant activity data, and push them to the backend that is
managing the navigated learning. �ese mechanisms include smartphone apps that learners install,
which records and transmits their activity details, or even low tech mechanisms like a teacher
collecting data from students a�er every learning activity, and uploading them in bulk.

Figure 3 depicts a semantic progression space for any given subject. Any subject ma�er of
study is divided into one or more facets of study. Each of facet is represented by a 2-dimensional
progression space.

A progression space for subject S and facet f , is represented as a 2-dimensional competency map
that is formally de�ned as follows:

CM(Sf ) = (C, P ,Q,γ ,d, �) (2)
Here the term C , which is the set of points forming the progression space, represents a set of

competencies that are the basic unit of learning. �e terms P and Q represent the horizontal and
vertical axes of the progression space respectively. �e horizontal axis represents a set of topics
(also called “domains”) that are addressed as part of this facet. �e vertical axis represents the
depth or “level” at which a particular topic is studied. Higher values of Q represents more depth,
requiring a higher level of skill and comprehension. �e terms d and � represent the distance
and progression maps, as described in Eqn 1. �e P and Q coordinates are organized such that
progression is always from le� to right, and bo�om to top. Hence, for any pair of competencies
c1, c2 ∈ C , c1 � c2 ⇒ p(c1) ≤ p(c2) and q(c1) ≤ q(c2), and for at least one of the dimensions
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x ∈ {p,q}, x(c1) < x(c2). In the �gure, this property is schematically depicted as concentric arcs,
emanating from the bo�om-le� to the top-right.

�e term γ : C → P ×Q represents an embedding function for competencies that assigns a (p,q)
coordinate for each competency. �e actual form of the embedding function itself is not speci�ed
by the navigated learning framework. �e only constraint for the embedding function is that it
should preserve the progression property from bo�om-le� to top-right.

A learning map for a given progression space comprises of a set of learning activities that are
embedded into the space. Formally:

LM(Sf ) = (Sf ,A,δ ,L) (3)

Here A is a set of learning activities, and δ : A→ Sf embeds each learning activity by mapping
it onto a competency in Sf . A learning activity is an abstract container that encapsulates several
kinds of learning engagements. For a given learning activity a ∈ A, the term typeo f (a) is used to
ascertain what kind of learning activity it is.

As earlier, the navigated learning framework itself does not prescribe any speci�c technique
for embedding learning activities into a competency space. �e only semantic requirement is that
a learning activity a mapped to a competency c should be useful for a learner in acquiring the
competency c . In early implementations of navigated learning in K-12 se�ings, learning activities
were manually embedded onto the space by experts. Later on, using this as a training dataset,
machine learning algorithms were built to embed learning activities.

Each embedding of the form δ (a) = c , represented by the tuple (a, c) is associated with it, several
kinds of meta-data. Some of these are as follows:

Relevance: �e relevance function relevance : A ×C → [0, 1] measures the �t between the
learning activity and the competency to which it is mapped to.

Engagement: �is is a score of the form enдaдement : A×C → [0, 1] that rates the learning
activity with respect to other learning activities mapped to the same competency c for
relative popularity of it being used in any learning pathway.

E�cacy: �is is a score of the form e f f icacy : A × C → [0, 1] that tries to estimate the
probability that a given learner would obtain competency c , by performing learning activity
a.

A set of data-driven interpretations for these metrics, and corresponding algorithms for comput-
ing these metrics are detailed in Ram and Srinivasa [19].

�e term L in Eqn 3 represents a set of learning pathways that are part of the learning map.
A learning pathway l ∈ L is a sequence of competencies l ∈ C∗ that represents a coherent and
progressive learning sequence. A learning pathway is a feature of the learning map, rather than that
of a learner. �at is, a learning pathway need not have a speci�c stated goal, and is not customized
for a given learner. It only represents a coherent sequence of competencies. �e formal notion of
coherency of a learning pathway is called the “Narrative Arc” problem, and is detailed in a later
section.

Principles of Navigated Learning. With the necessary de�nitions for semantic embeddings in a
progression space, we now describe the principles of navigated learning. Navigated learning can
be summarized by the following steps: Locate, Curate, Mediate.

Navigated learning is manged by a “Learning Navigator” with which every learner interacts.
�e Learning Navigator (or just, navigator), continuously interacts with the learning map and the
learner to perform the following:
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Locate: Based on data about their activities and outcomes from formal assessments, the “Lo-
cate” module of the navigator embeds learners in the space, and continuously updates their
location. Unlike a geographical space, a learner may have acquired several competencies
in the competency space. �us, their location is not identi�ed by a point, but by a data
structure called a Skyline, that is detailed in a later section.

Curate: Once a learner’s location is known, based on their stated goals or recently acquired
competencies, a set of further candidate competencies are identi�ed. Curating is based
on competency modeling principles, that identi�es complementary, supplementary and
con�icting competencies.

Mediate: �is is the logic by which the navigator navigates the learner by making suggestions.
Mediation is based on computing an underlying “Narrative Arc” that computes a semanti-
cally coherent and meaningful learning sequence individualized for each learner. Mediation
also involves suggesting connections with other learners as well as group learning activities.

In addition to the above, when learners interact with a learning map, they can explore the
learning space as if it were a 2D shared physical space. �ey can browse through the space, and
encounter learning activities, resources, as well as other learners at di�erent points in the space.
�ey can follow pre-computed learning pathways to go through a coherent sequence of activities.

3 COMPETENCY MAP CREATION
�is section introduces the work in progress, meant to automate the creation of a competency map
for a given subject and a facet. Currently, competency map is created with the help of domain
experts who build the P and Q coordinate axes, and label the di�erent topics that make up the
competency map. A set of learning resources are also assigned by the experts, to appropriate
positions in the map.

In this section, we discuss a methodology to automatically generate a competency map given
just a representative set of learning resources. While any deployment of a competency map would
likely need some form of manual intervention and ve�ing, the proposed method would greatly
reduce the manual e�ort in creating the competency map. �e proposed method does not require
any prior knowledge of the subject ma�er, and also does not require learning resources to be
designed in any speci�c manner. It considers each learning resources to be in the form of natural
language text. (Other forms of learning resources like videos and slides, are �rst converted to text
before being processed).

Given a set of learning resources R, the process of creating a 2D competency map, adopts the
following steps:

(1) Identify the domains forming the P coordinate
(2) Organize the domains in increasing order of complexity with respect to the given compe-

tency map
(3) Identify the domain (P coordinate) for each learning resource
(4) Identify the height (Q coordinate) for each learning resource
(5) Create competency map (that includes competencies for which no learning resources have

been mapped).
We �rst start with representing each learning resource as a text document, and creating a text

corpus R. �e corpus is then broken down into topical clusters using Latent Dirichlet Allocation
(LDA) [5]. LDA is one of the most widely used algorithms for topic modelling. Here, a document is
modeled as a distribution over a set of topics that are latent, and each topic in turn, is modeled as a
distribution over terms, that are visible. Given a corpus of documents, LDA uses techniques like
Gibbs sampling, to organize the visible terms from the corpus, into several topical clusters.
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[TO DO: Explain the volume-based method for competency map creation]

4 PROFICIENCY ALGEBRA
Pro�ciency algebra refers to the framework of reasoning about the pro�ciency of a learner or a
group of learners. For any given subject S , the pro�ciency pro�le of a learner l (denoted as PS (l)) is
de�ned as:

PS (l) = (M,A,ψ ) (4)
Here M (represented as MS (l) when the context is not apparent) represents the set of all com-

petencies mastered by the learner, A represents the set of all competencies that the learner has
a�empted but not shown mastery. �e termψ represents the learner “skyline” depicting the highest
pro�ciency level obtained for any domain in the subject.

�e skyline is a set of competencies across domains that represents the current “location” of
the learner. Routing and mediation logic are based on interfacing with the skyline. Formally, the
skyline is a set of competencies of the form:

ψS (l) = {c | c ∈ CS } (5)
Here, for any pair of competencies c1, c2 ∈ ψS (l) if γ (c1) = (p1,q) and γ (c2) = (p2,q), then it

follows that p1 = p2. �at is, there is at most one element of any given domain that can be part
of the skyline. Additionally, if c(p,q) is part of the skyline, then for every p ′ such that p < p ′,
there is no competency for the form c ′(p ′,q) that is a member of MS (l). In other words, the skyline
represents the highest competency in a given domain for which mastery has been achieved by the
learner. For any higher competency in the same domain, the competency is either under progress,
or not yet a�empted by the learner.

Skyline dynamics. When a learner acquires a new competency c(p,q) by demonstrating mastery,
the skyline is modi�ed accordingly. �is done by removing any competency of the form c ′(p ′,q)
such that p ′ < p, that is already in the skyline, and adding c(p,q) to the skyline.

Sometimes, an acquired competency may have to be deleted from the learner’s pro�ciency map.
When a competency of the form c(p,q) is deleted from the learner’s pro�ciency map, the skyline is
altered to include c(p ′,q) in the skyline such that it represents the highest pro�ciency obtained in
domain q.

Fig. 4. Cascading e�ects of deleting a competency, on the learner’s proficiency skyline

Note that the deleted competency c(p,q) may not be on the skyline, but may just be part of the
set of mastered competencies (MS (l)) by the learner. When an acquired competency is removed, all
other competencies for which this was an implied or stated pre-requisite, are also removed. Hence,
removal of an acquired competency may involve adjustments in several parts of the skyline.
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Figure 4 shows the cascading e�ects of deletion of a competency on the learner’s skyline. �e
competency shown in red in the �rst �gure is deleted. �is competency has a chain of pre-requisites
to competencies further in the map. When the competency is deleted, not only is the skyline
adjusted for that domain, it is also adjusted for the rest of the domains a�ected by the competency.

Comparison of skylines. A learner’s skylineψS (l) is said to “cover” the skyline of another learner
ψS (u), if for every competency from a given domain, the pro�ciency level ofψS (l) is no lesser than
the pro�ciency level ofψS (u). Formally:

ψS (l) w ψS (u) ⇒ ∀cl (p1,q) ∈ ψs (l), cu (p2,q) ∈ ψS (u),p2 ≤ p1 (6)
�e skylines of two learnersψs (l) andψS (u) are said to be equivalent (denoted asψs (l) ≡ ψS (u)),

ifψs (l) w ψS (u) andψS (u) w ψs (l). �e skylineψs (l) is said to “strictly cover” skylineψS (u) (denoted
byψs (l) A ψS (u)) i�: ψs (l) w ψS (u) andψS (u) A ψs (l). A pair of skylinesψS (l) andψs (u) that do not
cover one another, are said to be concurrent.

Fig. 5. Example of covering and concurrent skylines

In Figure 5, the black skyline is concurrent with the blue skyline, while it strictly covers the red
skyline.

�e di�erence between any two skylines is calculated using a family of distance functions, each
of which represents a di�erent interpretation of distance. �ey are detailed as follows.

Given two competencies for a given domain c1(p1,q) and c2(p2,q), the term ∆q(c1, c2) represents
the absolute di�erence between pro�ciency levels p1 and p2. �e term δq(c1, c2) represents the
directed di�erence from c1 to c2. Hence, δq(c1, c2) = −δq(c2, c1).

Similarly, we also de�ne the “improvement di�erence” between two competencies along a given
domain q, as the levels of pro�ciency required to go from one competency to the other.

iq(c1, c2) =

{
δq(c1, c2) i f δq(c1, c2) > 0
0 otherwise

(7)

�e improvement di�erence shows how much a learner has to improve along a given domain, to
reach a target competency.
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�e Manha�an distance, or the “L1 norm” between two skylines ψs (l) and ψS (u) is the sum of
total di�erences between pro�ciency levels across all domains. Formally:

L1(ψs (l),ψS (u)) =
∑

∀cl ∈ψs (l ),cu ∈ψS (u),∀q∈CMS

∆q(cl , cu ) (8)

�e grade di�erence, or the “L∞ norm” between two skylines is the maximum di�erence in their
pro�ciency levels:

L∞(ψs (l),ψS (u)) = max∀q∈CMS
∆q(cl , cu ),∀cl ∈ ψs (l), cu ∈ ψS (u) (9)

Given a skylineψs (l), we de�ne a “di�erence vector” to a target skylineψS (u) as a set of directed
distance functions between this and the target skyline, for each domain:

®δ (ψs (l),ψS (u)) = {(q,δq(cl , cu )) | cl ∈ ψS (l), cu ∈ ψS (u),q ∈ CMS } (10)

An “improvement vector” from a given skyline to a target skyline is also de�ned analogously:

®i(ψs (l),ψS (u)) = {(q, iq(cl , cu )) | cl ∈ ψS (l), cu ∈ ψS (u),q ∈ CMS } (11)

Fig. 6. Computing skyline distances

In Figure 6 two skylines l (in black) and u (in red) are shown. Distances between them can be
calculated as follows:

L1(l ,u) = 4
L∞(l ,u) = 1

®δ (l ,u) = (−1,−1, 1,−1, 0)
®δ (u, l) = (1, 1,−1, 1, 0)
®i(l ,u) = (0, 0, 1, 0, 0)
®i(u, l) = (1, 1, 0, 1, 0)
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Skyline group operations. A set of learner skylines have to be considered as a unit, when we need
to reason about the performance of a class as a whole. For this, we de�ne a set of operators that
operate on a set of skylines.

Let ψS = {ψS (l1),ψS (l2), . . . ,ψS (ln)} be the set of learner skylines for a class of n learners for
subject S . (We will drop the subscript S whenever the context is clear). For a given skylineψS (i), let
the term pq(ψS (i)) denote the pro�ciency level (value on the P axis) for the skyline for domain q.

�e “bo�omline”⊥ψ of the class is represented as a virtual skyline showing the lowest competency
obtained by the class, for every domain in the subject. �e “topline” >ψ is a virtual skyline showing
the highest competency obtained by the class for every domain in the subject.

⊥ψ= {c(p,q) | ∀q ∈ QS , c(p,q) = min
ψS (i)∈ψ

pq(ψS (i))} (12)

>ψ = {c(p,q) | ∀q ∈ QS , c(p,q) = max
ψS (i)∈ψ

pq(ψS (i))} (13)

Fig. 7. Operations on groups of skylines

Figure 7 shows the pro�ciency pro�le of a class of three learners l , u and v , represented by their
respective skylines. �e �gure also shows the bo�omline and the topline, in the form of dashed
skylines.

Given a class of learnersψ , the “grade disparity” ∆ψ of the class, is de�ned as the total amount
of competency units required to be executed by the class, to bridge between the bo�omline and the
topline. In other words, the grade disparity is the Manha�an distance between the topline and the
bo�omline.

∆ψ = L1(>ψ ,⊥ψ ) (14)
Similarly, given a class of learners ψ , the “grade separation” ∞ψ of the class is the maximum

disparity in pro�ciency levels in the class. �is can be computed as the grade di�erence between
the topline and the bo�omline.

∞ψ = L∞(>ψ ,⊥ψ ) (15)
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Given a class of learnersψ , the “mode” of the class Moψ is a virtual skyline connecting pro�cien-
cies across domains where most of the learners are currently situated. For a given domain, if there
is more than one mode, the lowest of them is chosen to represent the mode of the class.

In Figure 7, the mode of a class is a virtual skyline connecting the following pro�ciency levels
across the �rst �ve domains: (2, 5, 4, 4, 4).

�e improvement vector from the bo�omline to the mode of the class: ®i(⊥ψ ,Moψ ), represents
the intervention pro�le suggested to the teacher, to help upskill learners with the lowest pro�ciency
levels, to match with the rest of the class. Similarly, for any given learner l , the improvement vector
between the learner’s skyline and the mode of the class: ®i(ψ (l),Moψ ), represents the upskilling
pro�le required by the learner to catch up with pro�ciency levels of the rest of the class.

Given any class of learners ψ , and a competency map for a subject CS , the weight of any
competency c ∈ CS (denoted as wS (c)) is de�ned as the number of learners who have mastered
the given competency. �e “skyline weight” of competency c , denoted as ŵS (c) is the number of
skylines in the class that contain competency c . If domain of competency c is d , then the skyline
weight of c represents how many learners in the class have c as the maximum pro�ciency that they
have obtained in domain d .

Given any virtual skyline representing a collective characteristic (like >ψ ,⊥ψ ,Mopsi , etc.), the
weight of the skyline is de�ned as the sum of the weights of all competencies that are part of the
skyline:

w(>ψ ) =
∑

∀c ∈>ψ
w(c) (16)

Let the Mode of a class at some time, be represented as Mo0
ψ . A�er some intervention (named as

s) by the teacher, let the mode of the class be represented by the skyline Mo1
ψ . �e “li�” obtained

by the intervention is given by:

li f t(s) =
w(Mo1

ψ ) −w(Mo0
ψ )

N
L1(Mo1

ψ ,Mo0
ψ ) (17)

where N = |ψ | is the total number of learners in the class. �e li� score for an intervention, is a
measure that combines the total gain obtained by the intervention, and the number of learners
a�ected by the intervention.

5 LEARNING PATHWAYS AND NARRATIVE ARC
�is section discusses the automatic generation of Learning pathways, Learning pathway network
and personalized Narrative Arcs built over the learning pathway network.

A characteristic property of personalisation is “elasticity” in the system, even though designed for
the mythical average student, it needs to adapt to the actual individual student to various degrees.
In other words, �rst a common curriculum or a common sequence of competencies is designed
which is basically a learning pathway. �is learning pathway is then tweaked or personalized to
each student according to their pro�les and preferences and is called Narrative Arc.

Basically, learning pathways are created that connect di�erent competencies in the competency
map. �ese learning pathways together form a learning pathway network over the competency
map. �is is analogous to the road network on the physical map of locations, the learning pathways
are like the roads formed on the competency map. Once there is a learning pathway network built,
a learner takes the route comprising of the learning pathways to reach his learning goal from his
current position(skyline). �is route is called Narrative Arc. �e analogy here is again the driver of
a vehicle choosing a route comprising of di�erent roads to reach his destination from his current
position.
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�e learning pathways generated should be such that there is a semantic smoothness of transition
from one competency to the next and overall learning pathway is semantically coherent. Even when
learning resources address the same topic, their exposition styles may be di�erent, covering di�erent
sets of other supporting topics. Hence it is important to ensure that topical dissonance is minimized
as the learner progresses through a learning path. Further, as we progress through the learning
pathway, the learner should learn new concepts or competencies. �e learning pathway should
thus provide novelty while maintaining the coherence. To create e�ective learning experiences,
the learning pathway should have the right balance between coherence and novelty.

To generate the learning pathway networks, we create virtual learning resources at every
competency in the competency map. �e virtual learning resources are created using the di�erent
learning resources that are mapped to the competency such that the virtual learning resource
correctly represents the topic on x-axis at the complexity level of that topic on y-axis in the
competency map.

We propose a model to automatically generate the learning pathways and eventually a learning
pathway network using these virtual learning resources. We use re-enforcement model to compute
the learning pathways. �is model has two components, a greedy generator that generates the
learning pathways and a validator that validates if a learning pathway generated is valid or good
for learning. �e two components communicate with each other such that the validator provides
feedback to greedy generator and the re-enforcement helps to improve the output of the greedy
generator.

6 MEDIATION FOR NAVIGATED LEARNING
�is section discusses meadiation and characterization of mediation based on cognitive and learning
science principles that will be used in navigated learning.

�e above proposed pedagogic model has two components. �e �rst is the learning navigator,
which helps a learner to navigate through the progression space (discussed in section 2) giving
a smooth learning experience, and to get an overview of the learning map for any subject. �e
second component is the back-end community engine, which gives all users the opportunity to
interact and contribute to the progression space on which the learning navigator operates.

While curating the content in the proposed system, a teacher can specify a learning path. �e
system also suggests a learning path based on a learner pro�le built by its deep-end combined with
the information obtained through the Event-Condition-Action (ECA) rules. We de�ne an event as
any situation which the learner faces, either within the system or outside the system. �e conditions
are the information points obtained from the learner pro�le and learning activity vector. �e event
trigger is an element (a combination of events and conditions) that can trigger thinking or learning.
Suggest interventions (i.e. mediations) can be seen as manipulations of pathways. �e suggest
system intervenes in several such work�ows on a continuous basis, based on semantics extracted
from systemic activities. Suggest algorithms are triggered by ECA rules embedded in di�erent
parts of the system.

Here is an example of an event: Leena, a 9th Grade student, takes a photo of a �ower at Lalbagh
botanical garden, and her phone GPS sends co-ordinates of her location to the system. Leena’s
pro�le information, such as she has mastered �ora identi�cation; she has learned independently
Botany-I with 60% pro�ciency; she has studied the history of Karnataka with 70% pro�ciency as a
part of her classroom learning; she prefers videos and images, could be considered as conditions.
Combinations of any given event with given conditions could be considered an event trigger that
can initiate one or more suggest interventions. �e suggest trigger may intervene not just in the
student’s learning pathway, but also in the work�ows of other pertinent stakeholders like the
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teacher, course content creator, etc. A system of Noti�ers and Listeners manages ECA rules by
subscribing to di�erent forms of event noti�cations and checking the relevant condition to �nally
call a pertinent suggest method. �e suggest of learning pathways, i.e. the mediation o�ered, will
be determined by a thorough understanding of the learner – including their progress, performance,
pro�ciency, preferences, portfolio, markers, history, and goals – and of the learning activity –
including its relevance, engagement and e�cacy – providing a consistent learning experience
throughout.

�e term distributed cognition refers to the idea that cognitive processes are distributed across
members of social groups, i.e. the processes may be distributed among the coordination between
internal structures (i.e. processing and understanding of information) and external structures
(i.e. external environment). It is di�cult to understand how an individual learns without looking
at his/her interactions with other people and artifacts. Cognition happens through interactions
between people and artifacts or tools situated in the sociocultural context. In distributed cognition,
cognitive processes such as understanding of previous concepts are distributed through time as well,
so that earlier events a�ect later events [12]. [25] portrayed organizational cognition as distributed
cognition, where people get a rich representation of their knowledge and understanding by self-
re�ection and communication. �e cognitive structures get formed and re-structured through
communication and shared understanding. �is concerns how the learner learns by using various
resources and interacting with those resources, be they humans or artifacts or technology-based
resources. [6] argued that information technology can support distributed cognition by o�ering
ways to communicate, interact, and re�ect to form the rich representation of their understanding
and restructure the same by re�ecting upon and sharing it with others and receiving feedback.
�e term mediated learning refers to learning with interventions by a mediator (for example, a
human expert) and/or through an organized learning activity [11, 14]. An environment in which the
learner’s interactions with learning materials (such as readings, exercises, assignments, peers and/or
instructors) are mediated through advanced information technologies is called technology-based
mediated learning (TML) [1]. At the heart of the concept of mediated learning, there is a theory of
structural cognitive modi�ability (SCM) developed by [11], which says that a learner’s cognitive
structure (i.e. the way s/he learns or her/his intelligence) changes through expert interventions [15].
Hence, it is also characterized as learning to learn. Vygotsky [29] introduced the notion of the social
origins of individual psychological functions. He de�ned the zone of proximal development (ZPD)
as the distance between the actual developmental level as determined by independent learning and
the level of potential development as determined by the expert’s guidance. In other words, Vygotsky
said that while learning, a learner has two performance levels: the level the learner can a�ain
individually and the level the learner can a�ain with help of an expert. �e la�er (i.e. the learner’s
achievement with the help of an expert) is characterized as ZPD. �e theory of ZPD speci�es that
the development of higher mental processes depends on the presence of the mediating agent that
intervenes when a learner is interacting with a learning environment [14]. �e assumption is that
as a result of personal interaction in ZPD with the expert, the learner will eventually be able to
create a functional system for independent learning. Smagorinsky [27] argued that Vygotsky’s
ZPD is wrongly interpreted as instructional sca�olding, and as the notion of ZPD is connected
with development through social interaction, which is a long-term continuous process, ZPD should
be accurately translated as “zone of next development” (ZND).

�e basic prerequisites for achieving the vision discussed earlier include the capability to locate
the learner, curate potential learning activities, and make appropriate suggestions based on their
context. �e suggest sub-system leverages key elements from learning science, cognitive science,
neuroscience and data science to design the most precise learning pathway for every learner.
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Fig. 8. Fully automated mediations

�is requires multivariate optimization across di�erent learning pathways based on learning,
cognitive and data sciences. By using the available data about a learner and the available resources,
her/his ZPD (set of competencies) would be identi�ed, and the same would be used for mediation.
Identi�cation of ZPD automatically by using one or more data points is crucial for mediation. �e
very basic way to identify ZPD is through the immediate progressions (i.e. connected competencies)
of a mastered (80% performance) competency. Competencies for which the performance of a learner
is within the 60- 79% range would be identi�ed as the learner’s ZPD. �e set of competencies
associated with the resources that are most coherent with the resources associated with a mastered
competency would be considered as a possible ZND for a learner. We can also identify the ZND of
a learner based on time spent on the in-progress competencies in a learning map. Learner scores
like authority, citizenship, and reputation, together with user preferences, would be considered for
identifying a ZPD.

We categorize learning mediations into two major types: fully automated mediation and semi-
automated peer-driven mediation. �ese two types of mediations can be characterized in detail based
on elements such as learner context (i.e. the context in which the learner is), learner characteristics
and learner pro�le. We consider the learning navigator as a hypothetical teacher who is observing
the learner continuously, and also as a mediator that suggests learning resources automatically.
�is approach of mediations we name fully automated mediation. A�er determining the location of
that learner for the domain on the learning map, the system would identify the ZPD/ ZND of the
learner, which would be used for mediation. A few heuristics are given in �gure 8. In these fully
automated mediations, the system acts as mediator, a hypothetical teacher who understands the
learner.

By considering the inputs from distributed cognition, we also consider the other users - i.e.
the peers and even the teacher - as another set of mediators. �e system will suggest to these
mediators the learning resource and the point of mediation, i.e. the point where an intervention
could be made. �ese mediators can use their own judgement to accept the suggestion or consider
something else. �ese mediators would be decided automatically by the system based on their
interaction among each other, and hence this kind of mediation by these mediators is named semi-
automated peer-driven mediation. A�er identi�cation of ZPD of a user automatically, the system
would suggest a peer or a group of peers to a user for further interaction. A few heuristics are
given in �gure 9.

�e essence of cooperative learning is students learning in groups, which increases motivation
and improves interrelationships and as positive e�ects on achievements and higher-order thinking
[10]. Considering group dynamics, the system can identify groups in which good students dominate
and may thus a�ect the performance of the whole group in a positive manner, the system can
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Fig. 9. Semi-automated peer-driven mediations

then suggest that a lower-performance learner in a subject should be part of a group with high-
performing students in that subject who have good citizenship and reputation.

Even a�er the mediation with basic heuristics, the system would observe the learner to see the
e�ect of the mediation. If the mediation is e�ective, then the system would remember that heuristic
as a validated strategy, and if the mediation is found to be ine�ective, then it would remember
this and adjust the mediation with another heuristic. �ere could be pre-de�ned heuristics, or the
system could learn the heuristics for mediation from user interactions. �us, mediations by the
system would be controlled by the user interaction with the system, i.e. learning resources and
peers. Usually, adaptive systems are pre-designed for adaptation of the content and o�ering the
content in a personalized manner to the user. So, an adaptive system’s control is always only with
the system and hence its design. In the proposed system, user interaction with the system is the
prime driver for emergence of the network, and hence these medications are adjusted as per user
interaction. So, mediations would not be controlled single handedly by a user or even by a system.
In a technology- based mediated navigated learning platform, the mediation will be a balanced
control between the system (the hypothetical teacher) and the users.

REFERENCES
[1] Maryam Alavi and Dorothy E Leidner. 2001. Research commentary: Technology-mediated learning—A call for greater

depth and breadth of research. Information systems research 12, 1 (2001), 1–10.
[2] John R Anderson, C Franklin Boyle, and Brian J Reiser. 1985. Intelligent tutoring systems. Science 228, 4698 (1985),

456–462.
[3] Albert Bandura. 1969. Social-learning theory of identi�catory processes. Handbook of socialization theory and research

213 (1969), 262.
[4] Albert Bandura. 1986. Social foundations of thought and action. Englewood Cli�s, NJ 1986 (1986).
[5] David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet allocation. Journal of machine Learning

research 3, Jan (2003), 993–1022.
[6] Richard J Boland Jr, Ramkrishnan V Tenkasi, and Dov Te’Eni. 1994. Designing information technology to support

distributed cognition. Organization science 5, 3 (1994), 456–475.
[7] Christopher G Brinton, Ruediger Rill, Sangtae Ha, Mung Chiang, Robert Smith, and William Ju. 2015. Individualization

for education at scale: MIIC design and preliminary evaluation. IEEE Transactions on Learning Technologies 8, 1 (2015),
136–148.

[8] Peter Brusilovsky. 2001. Adaptive educational hypermedia. In International PEG Conference, Vol. 10. 8–12.
[9] Peter Brusilovsky. 2003. Developing adaptive educational hypermedia systems: From design models to authoring

tools. In Authoring tools for advanced technology Learning Environments. Springer, 377–409.
[10] Zoltán Dörnyei. 1997. Psychological processes in cooperative language learning: Group dynamics and motivation. �e

Modern Language Journal 81, 4 (1997), 482–493.
[11] Reuven Feuerstein, Mildred B Ho�man, Yaacov Rand, Mogens R Jensen, David Tzuriel, and David B Ho�mann. 1985.

Learning to learn: Mediated learning experiences and instrumental enrichment. Special Services in the Schools 3, 1-2
(1985), 49–82.

Gooru Technical Report, Vol. 3, No. 1, Article 1. Publication date: March 2019.



1:16 Gooru Technical Report 01-03

[12] Edwin Hutchins. 2000. Distributed cognition. International Encyclopedia of the Social and Behavioral Sciences. Elsevier
Science 138 (2000).

[13] Heisawn Jeong and Cindy E. Hmelo-Silver. 2010. An Overview of CSCL Methodologies. In Proceedings of the 9th
International Conference of the Learning Sciences - Volume 1 (ICLS ’10). International Society of the Learning Sciences,
921–928.

[14] Alex Kozulin. 2003. Psychological tools and mediated learning. Vygotsky’s educational theory in cultural context (2003),
15–38.

[15] Alex Kozulin, Jo Lebeer, Antonia Madella-Noja, Fernando Gonzalez, Ingrid Je�rey, Naama Rosenthal, and Mennyi
Koslowsky. 2010. Cognitive modi�ability of children with developmental disabilities: A multicentre study using
Feuerstein’s Instrumental Enrichment—Basic program. Research in Developmental Disabilities 31, 2 (2010), 551–559.

[16] Douglas C Merrill, Brian J Reiser, Michael Ranney, and J Gregory Tra�on. 1992. E�ective tutoring techniques: A
comparison of human tutors and intelligent tutoring systems. �e Journal of the Learning Sciences 2, 3 (1992), 277–305.

[17] Libby V Morris. 2013. MOOCs, emerging technologies, and quality. Innovative Higher Education 38, 4 (2013), 251–252.
[18] Fan Qing and Lin Li. 2011. Web-Based Collaborative Learning. Procedia Environmental Sciences 11 (2011), 189 – 192.

DOI:h�p://dx.doi.org/h�ps://doi.org/10.1016/j.proenv.2011.12.029 2011 2nd International Conference on Challenges
in Environmental Science and Computer Engineering (CESCE 2011).

[19] Prasad Ram and Srinath Srinivasa. 2017. Designing Social Machines for Mediated Learning Environments. Technical
report. Gooru Labs.

[20] L Todd Rose, Parisa Rouhani, and Kurt W Fischer. 2013. �e science of the individual. Mind, Brain, and Education 7, 3
(2013), 152–158.

[21] Todd Rose. 2016. �e end of average: How to succeed in a world that values sameness. Penguin UK.
[22] Gavriel Salomon. 1997. Distributed cognitions: Psychological and educational considerations. Cambridge University

Press.
[23] Valerie J Shute and Diego Zapata-Rivera. 2012. Adaptive educational systems. Adaptive technologies for training and

education 7, 27 (2012), 1–35.
[24] Barry G. Silverman. 1995. Computer Supported Collaborative Learning (CSCL). Computers Education 25, 3 (1995), 81 –

91. DOI:h�p://dx.doi.org/h�ps://doi.org/10.1016/0360-1315(95)00059-3
[25] Herbert A Simon. 1991. Bounded rationality and organizational learning. Organization science 2, 1 (1991), 125–134.
[26] Derek Sleeman and John Seely Brown. 1982. Intelligent tutoring systems. London: Academic Press.
[27] Peter Smagorinsky. 2018. Decon�ating the ZPD and instructional sca�olding: Retranslating and reconceiving the zone

of proximal development as the zone of next development. Learning, culture and social interaction 16 (2018), 70–75.
[28] Carole Steketee. 2006. Modelling ICT integration in teacher education courses using distributed cognition as a

framework. Australasian Journal of Educational Technology 22, 1 (2006).
[29] Lev Vygotsky. 1978. Interaction between learning and development. Readings on the development of children 23, 3

(1978), 34–41.
[30] Li Yuan, Stephen Powell, JISC CETIS, and others. 2013. MOOCs and open education: Implications for higher education.

(2013).

Gooru Technical Report, Vol. 3, No. 1, Article 1. Publication date: March 2019.

http://dx.doi.org/https://doi.org/10.1016/j.proenv.2011.12.029
http://dx.doi.org/https://doi.org/10.1016/0360-1315(95)00059-3

	Abstract
	1 Introduction
	2 Semantic Embedding and Progression Space
	3 Competency Map Creation
	4 Proficiency Algebra
	5 Learning Pathways and Narrative Arc
	6 Mediation for Navigated Learning
	References

