
Navigator Core Architecture

Table Of Content
Overview 2

Navigator Overview 2

Navigator Platform Components 2
Navigator Core Design Principle 3
Technology Stack 5

Architecture Overview 6
Component Architecture 6
Clusters 7
Environments 9

Data In & Data Out 9
Data In 10

Event Types 10
Event Logger 11
Event Transformer 11

Event Processing 11
Global Event Processors 12
Event Fan-Out 13
Discrete Event Processors 13

Data Out 13

Search & Suggest 13
Architecture 14
Profile based Route Suggestion 16
Profile based Rescope Suggestion 17
Performance based Reroute Suggestion 17

Navigator Application Design 17

Deploy Architecture 18

 Page 1 of 21

Overview
Navigator solution is expansive and supports an array of capabilities that can be leveraged by
partners. This document covers the Navigator platform architecture detail.

Navigator Overview
Navigator supports teachers, and with the right tools, to enable them advance student outcomes
and foster an innovative community that supports the success of every student. At the core of
Navigator is the huge catalog of open education resources that are highly curated and metadata
enhanced. This helps teachers pull together relevant content items for students. As students
interact with the content items, the generated data is analyzed in various dimensions. The rich
metadata at content helps Navigator track learner proficiency at various concepts.

Navigator Platform Components
Navigator platform comprises of various task specific microservices and orchestrators that can
broadly be categorized into:

● User Identity and Authorization: Handles user identity management, authorization
checks, auth token issue, and Single-Sign On (SSO) support.

● Competency model: Handles taxonomy model, framework setup and crosswalk support
● Catalog services: Handles content Create, Read, Update & Delete (CRUD) services,

content index and content search
● Suggest engine: Handles suggestions based on learner identity (profile), learning maps

(catalog) and principles of learning
● Data write and read services: Handles data logging, data reports, and data postback
● Datascope (Data stream processing pipeline)
● Learner profile services: Handles learner profile compute and read services
● Navigator application: Orchestrates all above to pull together various learner flows

 Page 2 of 21

Navigator Core Design Principle
Core layer is responsible for data management, provides data level CRUD capability as API,
manages user, content, class and usage data. Atoms and Orchestrators built around these Core
capabilities extend to specific needs is the preferred model. This helps us manage extensions
consistently and without a lot of code bloat.

 Page 3 of 21

Essentially, our design would follow the below structure:

● Different data sources core to our systems will be central and abstracted to external
layers

● Core services expose the data sources to achieve one level of abstraction to avoid
systems tied directly to data sources.

● Extension APIs work on top of Core APIs and will be a mechanism to feedback data /
information into the data sources which will be assimilated and used

● Orchestration APIs enable different kinds of responses for custom usage of tools. This
could be either single orchestration API, which could be reused, or sub system level
orchestration layer, which talks to core APIs to assemble the required responses.

● Subsystems and Tools layer which will provide the experience are built on top of this
● Message bus will enable different types of communication between different nodes of

platform

Further, each Core component and services comply with the following guidelines:

● RESTful interface exposes core features, JSON responses only
● Controller-service separation of concerns
● Cacheable and layered architecture
● API versioning followed when upgrading the same
● Event based update of other subsystems like search / analytics
● All API protected with authentication key to avoid denial of service (DOS) attacks
● Role based access control for authorization of API

The basic constraint behind the architectural choices is governed by scalability. The system is
designed to be horizontally scalable. To achieve this most core components are written using
async frameworks. Using async frameworks enables the blocking operations to happen on
worker pool threads while main threads are available for servicing user requests. Note that
because of JDBC layer, the architecture is not async end to end.

 Page 4 of 21

Technology Stack

Platform Purpose

Ubuntu 16.04 or above OS recommended; but you can use other variants as well

Java 8 All backend microservices are implemented in Java

Kafka 0.10.1.1 Messaging system for cross-service communications

Zookeeper 3.4.10 Distributed coordination of kafka nodes

Cassandra 3.0 Data store for raw/unprocessed usage events

Elasticsearch 5.6.0 Content index and search engine backbone

Postgres DB 10.3 Database to store all relational and transactional data

Redis 4.0 Cache storage for frequently accessed critical data

Memcached Cache storage used at real-time subsystem

HAProxy 1.6 or above To manage routing rules to various services / sub-systems
as well as load balance traffic; other alternatives like
Application Load Balancer can also be used for the same
purpose

Nginx 1.14.0 or above To manage multiple front-end sites; other alternatives can
also be used for the same purpose

Gradle 2.7 & 4.4 Build tool for most of the back-end microservices; some
services need higher version of gradle as noted at
build.gradle files in respective service repository

NodeJs 4.4.* For frontend build as well as to run specific identity
provisioning service component

Tomcat 8.0

Maven 3.3.9

While most of the component redesign has moved away
from Maven build and managed under Tomcat server,
there is one server (search and suggest service) that still
is not migrated away. Hence this is needed today but may
move away from the requirement at a later time.

Ember-Cli, Bower, PhantomJs,
Grunt, Stubby

Build environment for front-end application

 Page 5 of 21

https://www.ubuntu.com/download/server
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://kafka.apache.org/downloads
https://zookeeper.apache.org/releases.html
http://cassandra.apache.org/download/
https://www.elastic.co/downloads/elasticsearch
https://www.postgresql.org/ftp/binary/
https://redis.io/download
https://memcached.org/downloads
http://www.haproxy.org/
https://nginx.org/en/download.html
https://gradle.org/releases/
https://nodejs.org/en/
https://tomcat.apache.org/download-80.cgi
https://maven.apache.org/index.html
https://github.com/Gooru/Gooru-FE/blob/master/docs/environment-setup.md
https://github.com/Gooru/Gooru-FE/blob/master/docs/environment-setup.md

Architecture Overview

Component Architecture
At the heart of the Navigator are the Core services. These are designed as microservices
created using VertX. API access requires an auth token which is validated at every API entry
point. The tokens are managed at Redis cache and expiry is extended every time an API is
invoked. Postgres database is the key data store for all core entities - user, content, classes,
competencies. Messaging across clustered sub-systems is managed via Kafka message bus.
Search and Suggest subsystem uses ElasticSearch. All activity data is stored at Cassandra
while processed user activity data required for explicit reporting purposes is captured at
analytics Postgres database. All services are exposed over Restful API and responses are
always in JSON format. Frontend is developed in EmberJS and orchestrates the various
services per application flow needs.

Key Service Components are as below:

● Core Services: Content, Class, Metadata and Taxonomy

 Page 6 of 21

https://vertx.io/

● Auth Services: Users, Authorization, Tenant, Partner, App
● Study Suggestions
● Class and User Reports
● Realtime
● User Interface: Navigator, Widgets
● Partner Integration Components:

○ SSO support for service providers LTI, GMail, SAML, WSFed, Shibboleth
○ Data In APIs
○ Data Out APIs / Post-back
○ Roster Sync

Clusters
Each component is a collection of one or more processes running. With such a view each
component forms a cluster. In a cluster, there is at least one cluster member which is
responsible for handling incoming requests. These requests are mostly HTTP based and thus
the cluster member handling them is the API gateway. The gateway is aware of its members
and what requests each member can process. Its primary task is to act as a web server listening
for requests. Each cluster generally contains one cluster member which is responsible for auth
checks. API gateway will bind this cluster member for all APIs to make sure that valid requests
are reaching the downstream handlers.

Auth check handlers are responsible to verify the access token provided in request with respect
to token store present at Redis. In case of auth failures, the response is returned to caller. If
auth is successful, then request is dispatched to the next handler.

The communication between cluster members happen using TCP with a request response
model which is asynchronous. The cluster management happens using Hazelcast where in a
new cluster member is automatically detected and is made part of cluster.

 Page 7 of 21

When it comes to horizontal scaling, the architecture provides multiple avenues to scale, e.g.

● One gateway cluster member backed by multiple instances of processing handlers. The
load balancing in this model happens in round robin fashion.

● The cluster itself is replicated and load balancing is managed at the level of entry point
of deployment infra (e.g. haproxy, nginx etc)

● These two approaches can be mixed as well. E.g. if there is load on only single handler
for a cluster, only one cluster can be maintained and handler can with multiple instances.

There is another level wherein scalability can be dealt with. Since the clusters are implemented
to be asynchronous, there is a concept of event loop threads and worker threads. Their count is
configuration governed and in case where scaling needs change, the configuration can be
tweaked to provide better scalability without additional hardware.

While the intracluster communication happens with the TCP bus which is non persistent and
local to the cluster, the inter cluster communication happens using different methodologies. Two
of which are HTTP calls and Kafka. Kafka communication is used where the communication
does not need to be request/response type. However, if there is a need for request/response
type of communication across the cluster, then HTTP based communication is used.

 Page 8 of 21

Environments
There are different environments for different purposes. Stage, Beta and Production are the
most important ones from release readiness perspective. Development and QA environments
are important from an engineering perspective for feature creation.

Each environment is completely isolated from other environments to provide for better security.
This is done using Virtual Private Clouds specific to that environment. This makes sure that no
member from one environment is able to access any member from other environments. The
communication, if it has to happen, needs to happen using authenticated APIs.

Data In & Data Out
At a broad level, event data coming in is streamed to Kafka message bus which keeps
accumulating events while ensuring all consumers in the system get a copy of the message.
There are task/metric specific consumers that pick up events from Kafka, process and store
them as needed. All events are always stored at Cassandra DB for any future reference. Class
and other learner specific events data is processed for reporting needs and processed report
data is stored at PostgreSQL reports database for better query ability. Additional aggregates
computed for purposes of Learner Profile are stored at Postgres database.

Data In & Data Out components expose REST api for data logging with XAPI compliance on
request payloads related to learner study activities.

Navigator collects data related to Content, Learner Study activities, Search, Social and other
User events, whether originating within Navigator system or due to ingestion by partner
systems.

The activity data is stored in a manner to enable filter on multiple dimensions: time, user, action,
and content. Data would be used to generate Aggregated Reports, Learner Profile, Learner
Performance report, Admin Reports, depict User Journeys, and more.

Data In
Navigator collects data as users interact with the system. There are a variety of events that
generate activity data. Some are events explicitly logged by application / components
(client-side events); and some are generated as a side-effect of certain user actions (server-side
events). Further, there are scenarios where external entities log data to Navigator via an
exposed API.

 Page 9 of 21

Event Types
Navigator application is one of the primary event generators for the learner activities. Events are
generated for learners’:

● Independent Learning Activities where learner self-studies an available course
● In-Class Activities where learner is assisted by teacher but learning is self-paced
● Daily Class Activities where teacher focuses entire class on a specific day activity
● Content Activities where users create and update content, collaboration, reuse, view
● Other Activities related to user sign-up, login, class join, follow & other social interactions

Typically, for a learner, the progress, performance and proficiency are key performance
indicators (KPIs) captured. So, Score, Time spent and reactions for the given context of learning
are logged in the system, as learners work with the Navigator application. There are additional
events captured related to teacher grading of free response questions, teacher override of
score, etc that impact the above KPIs.

Additionally we also plan to associate Mindset Vectors, Community Vectors, Skills vectors to
describe the Learner’s profile and to help the system locate the learner more precisely and to
enhance search and suggest for the learner. Some of the examples of these vectors are - Self
Confidence, Grit, Perseverance, Engagement, Citizenship, Authority etc.

Note that using the Navigator application triggers the data collection automatically. However, the
models where partner users are not using Navigator application is also supported. In this model,
Partners and System Integrators send discrete events to Navigator. Partners may send events
in the standard XAPI-formatted payload or a variant based upon mutually agreed API contracts.

Different CRUD operations on the Navigator Core entities like Class Create, Course Copy, Add
Content are captured as internal server-generated events. Internal events are also generated
for other activities like User Sign-in, Assigning Collaborators, Student joining Classes etc.

Event Logger
The events generated are stored as Raw Events at Cassandra and are also further processed
by the Event Logger Component. The events are also stored as commit log in Kafka for a
predefined time.

 Page 10 of 21

The Event Logger is setup as a scalable and a high availability (HA) Cluster. The requests
coming to the Event Logger are HTTP which is handled by an API Gateway. Primarily the API
Gateway is a Web Server capable of handling high volume requests.

The gateway relays the requests (events) to the downstream processor(s) via Kafka. The
downstream event processor is responsible to process every event and store the data into the
underlying data store, PostgreSQL database.

Event Transformer
Partners & system Integrators can send data to Gooru using the shared Navigator APIs.
Partners can send data to Navigator as a JSON Payload that is xAPI Standards compliant or
any mutually agreed upon custom format. The Event Transformer component will transform the
Partner messages into Navigator format and relay them down to other event processors and
data stores.

Event Processing
All events are collected at data-in / event logger component which stores all raw events at
Cassandra while propagating the events further for additional custom processing. The event
fan-out component is responsible for generating necessary events and push through the
message bus. Specific data processors then consume the messages and compute the specific
metric that each one of the processors is responsible for. Based on the event type, the Data Out
and outcome post-back components do the necessary additional transformation and relay of the
same to the partner ecosystem.

 Page 11 of 21

Global Event Processors
The events flowing in from the outside world are mostly stateless atomic events and they may
not carry a lot of context information with them. Note that context implies the association or
references to the metrics associated with the events and not necessarily imply the context of
event attributes. For example, the content usage events are atomic and only project information
related to the score of a particular question identified in that Events or time spent by the user on
that particular resource. However it is always desirable to know the cumulative time spent for
the entire collection or the cumulative score in assessment.

This needs further processing of the events by correlating it to the current context in the system.
Global Event Processors (GEP) enables this post-processing of events. There maybe one or
more global event processors in the system.

Event Fan-Out
The GEP events are sourced to the Event Fan-Out / Demultiplexer component. The primary
purpose of Event Demux is to segregate the factual information provided in the GEP events,
create specific internal events per measure (metric) and emit these Discrete Events downstream

 Page 12 of 21

to the Discrete Event Processors. For example, the key measures (metrics) associated with an
Assessment are time spent, score and reaction. Once the assessment is completed an event
containing information of the Overall time spent, score and reaction along with the dimension
information (User, Course, Unit, Lesson, etc.) is sent to the Demux. Demux will create three
discrete events for the three measures (including the event attributes/dimensions) and send it
downstream for further processing.

Discrete Event Processors
The discrete event processor (DEP) is responsible to process every event and store data into
the underlying data store. Based on the events being consumed by the DEP’s, they are also
chained, i.e. one DEP can act as an event producer for another DEP.

The processed Data from the DEP’s will serve the Partner Data Out components and the Data
Read API’s.

Navigator XPI Transformer
xAPI is an interoperability specification that allows learning technologies to talk to one
another. Integrating two xAPI conformant systems can be considerably faster and
cheaper. This includes migrating data from old learning systems to new ones.It is
possible to collect data about the wide range of experiences a Learner has (online and
offline). xAPI captures data in a consistent format about a person or group’s activities
from many technologies. Heterogeneous systems are able to securely communicate by
capturing and sharing this stream of activities using xAPI’s simple vocabulary.

The Navigator Event Transformer will transform the relevant native Navigator Events into XAPI
Statements. These XAPI Statements will be stored into Learning Record Store (LRS)

Sample Navigator Event Transformation to XAPI Statement

 Page 13 of 21

Data Out
Generically, data is served to the external world using the API Infrastructure. Navigator frontend
application uses the available API for various in-product reporting purposes. Data can be pulled
by the partners using the REST APIs. These data read / reporting APIs are tuned to report data
at a specific context level - class level of learner activity and/or independent learner activity
related reports.

Additional Data Out components optimized for Partners’ specialized data requests are also
created. Data Out component can be configured to handle a data pull request by the partners or
data can be pushed to the partners at specified triggers. The trigger can be an incoming event
or a specific time interval. Data Out also includes the IMS LTI outcomes service that allows
Gooru to send information like score, time spent on content to its consumers (typically the
Learning Management Systems).

For Interoperability with other Learning Technology Platforms/products Navigator Activity data is
stored into Learning Record Store (LRS) as XAPI Statements. RESTful APIs are exposed to
GET/POST XAPI Statements into this LRS. Apart from the Navigator Activity events, events
from external learning systems can be stored and fetched from this LRS.

 Page 14 of 21

Search & Suggest
Navigator uses ElasticSearch (ES) at its core for Search and Suggest services. All content
catalog items, along with its rich metadata, are stored at index as terms for faster search
experience. There are multiple indexes in use that are used for specific purpose either
standalone or in conjunction with the other: resource index, collection index, course index, unit
index, lesson index, content publishers index and crosswalk index.

Architecture
Search infrastructure is distributed in nature and is designed to be horizontally scalable. Key
components of the infrastructure include

● Indexer adds / updates content and metadata into the search index.
● API layer handles search queries and is the user facing part of search & suggest system.

As content gets created or updated, Navigator core services publish this change data / events
into the Kafka message bus. These messages are consumed by indexer component which then
refreshes the documents that have changed and updates an index attributes across ES
indexes. Index updates are in real-time for user updates & in batch mode for bulk content
ingestion done via tools. 4-gram index is maintained currently based on usage trend analysis.

 Page 15 of 21

Search and Suggest services utilize various data points - user inputs, usage data gathered,
content extracted metadata and other contextual information to serve response for that context.

Suggest, unlike Search, has no real user input query term but the same is assumed based on
the context of invocation. The requests go through a processing pipeline to classify, expand,
rewrite, apply necessary filters, search, rank using signals, and gets personalized.

Relevance score of content is computed based on Term Frequency (TF) and Inverse Document
Frequency (IDF) and adjusted based on usage signals collected by Navigator, with TF/IDF
weighted at 60% and usage signals weighted at 40%.

 Page 16 of 21

REST APIs are exposed for search across catalog with a variety of filters, related content
suggestions, performance based suggestions, crosswalk, and index export.

Key learning path suggestions are offered to student are as below:

a. Profile based route suggestions
b. Profile based rescope suggestions
c. Performance based reroute suggestions
d. Teacher influenced/discretionary reroute suggestions

Profile based Route Suggestion
At every student journey, based on learner profile, more specifically learner current location as
reflected at competency skyline, learners are offered a route that supports student in successful
completion of a chosen target journey.

Route suggestions are always made in the context of a course and at the entry point into course
as a way to better prepare students for what’s coming ahead in the course. These suggestions
are made only once at the start of the journey; and are not offered after users start the journey.
But learners can go back anytime to review previous suggestions and accept the same route.

Route suggestion is a preparatory course, compiled as an array of units. Depending on the
domains across which the competency gaps are spread, this preparatory course may contain

 Page 17 of 21

multiple units, one Unit per domain, and multiple lessons per unit, one Lesson per competency.
The route suggestion intends to help learner cover the competency gaps prior to starting the
destination journey.

Profile based Rescope Suggestion
When students choose a destination Navigator course for study, Rescope of selected
destination course happens to focus learner on competencies learner is yet to master. The
rescope computation identifies the content at destination course that the learner can skip and
focus on the content that will enhance the learner mastery.

Rescope suggestions are always made in the context of a course and at the entry point into
course as a way to focus the student on competencies not yet mastered at the course.

Performance based Reroute Suggestion
As students commit to a given journey and progress down a learning path, Navigator tracks a
student activities and performance at every competency. Reroute always happens in the context
of an assessment. Based on student performance, at the end of every assessment, a
suggestion that can result in rerouting is made:

● If the student performs poorly (<80%) at the competencies covered by the assessment
and if competency is not completed or mastered previously, an appropriate signature
collection is suggested as a backfill.

● If the student performs very well (>= 80%) at the competencies covered by the
assessment and if there is no mastery data (system may have completion data), student
is offered a signature assessment as suggestion to earn mastery. If this assessment is
part of a Route or Teacher suggestion, then reroute logic is not triggered, implies
signature assessments are not suggested.

Navigator Application Design
● EmberJS used for front-end application
● Reusable components developed as embeddable components
● Ember-Data layer for data encapsulation
● Bootstrap framework stitched together for responsive UI
● Localization managed via ember-i18n services
● (Limited) Feature configuration managed via external config files
● Headless testing of functionality using Ember Tests, PhantomJS & Stubby

 Page 18 of 21

Deploy Architecture
Navigator sources are spread across Github repositories with build and deploy process
managed at Bamboo-based Continuous Integration / Continuous Deployment (CI/CD)
implementation and via AWS Code Deploy agents. For detail on manual build process, refer to
this document. For access to repositories and other infra, do contact us at partners@gooru.org.

Navigator is deployed at AWS in a high-availability mode. As such, at each layer there is
redundancy setup so as not to impact application & services availability. Bamboo-based CI/CD
implementation is in place to help with automated build and deploy of application components.

 Page 19 of 21

https://docs.google.com/document/d/1nfgMKCaFttAlFpONHcdP3i6Dr6ky3cSkWSvgqlM1OaM/edit

The first component which is outside world facing from infra perspective is Elastic Load
Balancer (ELB). ELB serves purpose of:

● Termination of SSL
● End point of domains
● Load balancing between different haproxy(s)

Once the request is forwarded from ELB, it ends up on one of two parallel setups which are
frontended by haproxy. These two setups are identical and they belong to same VPC. Haproxy
rules are responsible to identify the cluster which is meant to serve the incoming request.

Most of the clusters only have specific ports opened to haproxy. Once the request is dispatched
to cluster, the cluster determines its processing methodology. For haproxy the request is
synchronous, even though cluster may process it asynchronously.

 Page 20 of 21

The infrastructure setup is continuously monitored using a combination of strategies:
● Server monitoring is done using Vistara agents and AWS health check services
● App level monitoring using scripts extracting log data and verifying HTTP response

codes. Failures are flagged to team for review and action.
● API response monitoring passively by extracting haproxy logs and raise alerts if time

taken for API exceeds thresholds
● 24 x 7 infra monitoring of the system by dedicated team

For more detail on deploy, refer to the Navigator Deployment document.

 Page 21 of 21

https://docs.google.com/document/d/1EVX7yx0medEuEtq97hwFcZuCuQ03Gu2Bg0lmhamtPUA/edit#heading=h.r3bqy3mpo06r

